The College of Engineering and Natural Sciences recently hosted a guest speaker who received international acclaim when he succeeded in constructing Leonardo da Vinci’s conceptual drawings of 15th century robots.

Mark Rosheim, one of the nation’s leading robot experts, drew a crowd of nearly 500 for his April 6 presentation on da Vinci’s “lost” robots.

The event, held April 6 at the Allen Chapman Activity Center, marked the inaugural Norman M. Hulings, Jr., Memorial Lecture, named to honor the late TU alumnus and longtime executive with ONEOK and Oklahoma Natural Gas Co.

Rosheim is the founder and president of a Minneapolis-based mechanical design company. His work on da Vinci’s robots has attracted attention worldwide, including articles in the New York Times, U.S. News and World Report, and Wired. Rosheim’s work has been the subject of news features and films on several Italian television stations, the BBC, PBS and the History Channel. During his professional career, Rosheim has developed robotic technologies for NASA, the Department of Defense and the U.S. Department of Energy. He holds more than 20 patents in robot technology and has published and lectured extensively around the world on the topic of robot technology.

In addition to Rosheim’s lecture, two campus exhibitions were held for visitors wanting to learn more about da Vinci’s work. The reconstructions of da Vinci’s robot knight and his spring-driven cart were on display in the Gallery of the Allen Chapman Activity Center. The exhibit also included Rosheim’s work on robotic wrists and NASA humanoid robots.

The second exhibition featured Rosheim’s collection of rare 19th century editions of da Vinci sketchbooks. Examples from da Vinci’s codices and selections from Rosheim’s personal journals were available for viewing in the Satin Room of McFarlin Library.

Rosheim’s lecture explained how da Vinci engineered a robot knight that was encased in medieval armor and capable of movement including sitting up and moving its head, arms, and anatomically correct jaw. Da Vinci also designed a cart to run a pre-programmed course. The cart is viewed by many scientists as the first programmable device ever invented.

Rosheim noted that for many years, da Vinci’s robotic sketches were overlooked by scholars as mechanically impossible. Fascinated by da Vinci’s work, Rosheim worked diligently to prove that they could work as da Vinci had originally designed them. Rosheim’s research connected the Renaissance scientist’s meticulous study of human anatomy and mechanical engineering with the beginning of robotics.

Steven Bellovich, dean of the College of Engineering and Natural Sciences, reminded those attending that da Vinci’s interdisciplinary approach to problem solving is applicable to modern-day research.

“Da Vinci’s inventions are still so relevant today because he excelled at taking concepts from biology, engineering, art, and architecture and synthesizing them into something new and revolutionary,” Bellovich said. “We would do well to emulate his multidisciplinary approach to innovation.”
TU Undergraduates Win Prestigious National Scholarships

The University of Tulsa’s sweep of nationally competitive scholarships this spring put the spotlight on TU and the College of Engineering and Natural Sciences (ENS) in particular. Of TU’s eight scholarship winners, seven were from ENS.

TU students have won more nationally competitive scholarships in the past decade than all other Oklahoma universities combined. ENS has produced the majority of these scholars, and this year is no exception.

NSF Graduate Fellowship
Two University of Tulsa students have won National Science Foundation (NSF) Graduate Research Fellowships, Thomas Loyd and David Robinson. NSF Fellowships cover three years of graduate school education and are valued at $120,000 each.

Loyd, an engineering physics student from Albuquerque, N. Mex., plans to attend the University of New Mexico and work in quantum information group. Loyd’s winning research proposal for the NSF Fellowship was in the innovative field of quantum computing. Loyd began his undergraduate research at TU on a NASA-sponsored project analyzing characteristics of thin-film semiconductors. He continued this research for the remaining two summers at the NASA Glenn Research Center (GRC) in Ohio and spent the next two summers at the Sandia National Laboratories in Albuquerque.

David Robinson, a chemistry student from Katy, Texas, will continue the research he started at TU in graduate school at Princeton University. His winning research proposal for the NSF focused on the improvement of photosynthetic oxygen evolution in water splitting by the molecular design of non-metals complexes. Robinson, a National Merit Scholar, has participated in TURC and the TU Chemistry Summer Undergraduate Research Program (CSURP) since his freshman year.

All three of Loyd’s and Robinson’s honors mentors come from Colorado Springs, Colo.: Lee Neukirch, a mechanical engineering-mentor from Canisius, Minn., and Megan Walker, a 2000 veteran who leads physics graduates of TU from Tulsa, Okla.

Goldwater Scholars
Three University of Tulsa students have been designated Goldwater Scholars with a fourth TU student named as an honorable mention. Goldwater scholars are the premier award for recognizing the nation’s most promising students preparing careers in science, mathematics, and engineering. This one- and two-year scholarships cover the cost of tuition, fees, books, and room and board up to a maximum of $10,000 per year, with supplements rastering two-year scholarships.

Vanessa Andrews, a physics/mathematics junior from Davis, Calif., intends to pursue a doctoral degree in earthquake seismology. She began her research at TU in the summer of 2005 with TURC and the Geosciences Summer Undergraduate Research Program (GSURP) studying brittle transition on well sites in the Valles Prieto Prospect in northern Oklahoma. Andrews is also a member of TU’s varsity rowing team.

Christopher Johnson, a mathematics/computer science sophomore from Maryland Heights, Mo., intends to pursue a doctoral degree in computational neuroscience. Prior to his freshman year at TU, he attended the TU Chemistry Summer Undergraduate Research Program (CSURP) working on synthesizing quantum dots in hydro-phonically functionalized silica shell matrix. He presented some of his research findings at the 231st National Academy of Chemical Society Meeting in Atlanta, Ga., during the spring semester of his freshman year. Swenson became the first U.S. student accepted into an elite academic program at the Gokula University of Technology in Gokula, Poland where she studied during the 2007 spring semester.

DoD Research Fellowship
Computer science senior Pavel Gershoyiv has received a National Defense Science and Engineering Graduate (NDSEG) Fellowship from the U.S. Department of Defense (DoD). The NDSEG covers tuition and fees for graduate studies and provides a stipend for living expenses valued at more than $91,000. Gershoyiv will continue his studies at TU as a graduate level in computer science. He would like to work with the DoD after he receives his master’s degree from the TU Center for Information Security.

During his time as an undergraduate at TU, Gershoyiv won a Goldwater scholarship in 2005 for his research focusing on designing and extracting digital evidence from firmware chips, an integral component of most electronics such as cell phones or PDAs (personal digital assistant). He completed an internship with the Tulsa Police Department’s Cyber Crimes Unit and has provided digital forensic services for state and federal agencies. In addition to the NDSEG Fellowship, Gershoyiv was awarded a 2007 Homeland Security Fellowship, but had to decline it because he could select only one federal award. He was also named a 2007 honorable mention for the NSF fellowship.

Phi Kappa Phi
Andre Bouzanti, a senior biochemistry major from Tulsa, Okla., has received a Phi Kappa Phi Fellowship for his graduate studies. Selection for the national honor society’s $5,000 award is based on academic achievement, honors and awards, research experience, and service on and off campus.

Bouzanti plans to attend Vanderbilt University School of Medicine in Nashville, Tenn., where he will study surgery. He participated in TURC and received honorable mention in the 2007 Annual Student Research Colloquium for his presentation entitled “Investigation of N-methyl-5H-benzotetrazolobenzophenanthridine-5, 12-dione Induced Cell Toxicity.” He attended the Harvard-MIT Health Sciences & Technology Summer Institute in Biomedical Optics in 2006 and has presented at the American Chemical Society conference. Bouzanti also participated in TU’s Honors Programs and is a member of Alpha Epsilon Delta, a pre-medical honor society.

TUS Students Cook Up Some Tasty Chemical Reactions

University of Tulsa Chemistry Professor Kittie Sicc Hickman’s idea. He had to bring together the accumulated courses taken by his students during their studies and synthesize it into a year’s urging course.

“Now I can’t cook with this as a PowerPoint slide,” Symons said. “That would put them all to sleep.”

Indeed, he put chemistry concepts and principles into the context of something everyone enjoys — food.

The capstone course, “The Chemistry of Cooking,” engaged students’ knowledge into the science of food preparation. Each class experimented on a particular organic chemistry, physical chemistry, or biochemistry concept that students have studied in previous courses, and applied this concept to a food or group of foods.

Course topics included “Effects of pH and Fat Dispersion in Milk (yogurt, cream cheese, butter, whipped cream),” “Crystallization of Sugar Solutions (peanut brittle, fudge, ice cream)” and “Generating Bread Foams: Biscuit Bread (bagels, pretzels, cinnamon rolls).”

The class has been a big hit with students because of its practical application to the everyday world — and the chance to create their creations in class. Symons also conducted informal presentations at student apartment common areas around campus to get students interested in chemistry and to think of science in a different way.

Symons recently presented his culinary chemistry “active learning” course at the American Chemical Society’s national meeting in Chicago. A student survey of his class conveyed that despite the complex (continued page 4)
The new McKinney Prototyping Lab, which was formally dedicated on January 9, 2007, will allow mechanical engineering students to develop working prototypes using industry-standard manufacturing equipment. The centerpiece of the lab is a Computer Numerical Controlled (CNC) lathe and a CNC mill. The CNC equipment produces components based on electronically developed student designs. This allows students to seamlessly take their designs from conceptual ideas to functional hardware.

The McKinney Prototyping Laboratory, located inKoplinger Hall, employs a technician who is available to maintain and monitor the lab’s computer-controlled machines.

"One of the hallmarks of a TU education in mechanical engineering is the opportunity for students to design and build their own projects," said Ed Rybicki, the Harry H. Rogers Chair of Mechanical Engineering. The Mechanical Engineering Department is the recipient of some very valuable waterjet cutting time. Working through the McKinney Prototyping Laboratory, Tulsa-based company Neosource Inc. has offered at least 40 hours of waterjet cutting time to TU engineering students during 2007. Already, several mechanical engineering students have visited Tim Clement at Neosource for assistance with their senior projects. Students were given a tour of the facility and immediate help on their projects through parts made by water jet cutting. This assistance was crucial to the success of two of Tim’s projects this spring and the students gained valuable experience through Neosource’s resources.

"We are happy to have established this relationship with such a state-of-the-art facility," said RuChard, our projects and educational outreach training to raise awareness and educate teachers, school staff, and custodians on the importance of indoor air quality. The second part involves data collection in the form of questionnaires collected from key groups in each school system. Back at TU, the data is input and synthesized into a report for each school and for the district as a whole. The IAQ report provides a baseline reading on the school’s air quality, identifies areas of concern, and provides feedback on how the district can improve air quality in ways that are both economic and effective. About 60 schools in Austin will participate in the initial data collection with the possibility of more schools involved in the future. Through its very successful effort, TU’s IAQ analysis will last three to four years as the project is extended to other districts.

The U.S. ENVIRONMENTAL PROTECTION Agency (EPA) has awarded $42,576 to The University of Tulsa Indoor Air Quality (IAQ) Tools for Schools program to assist the Austin (Texas) Independent School District in improving air quality for 42,000 students, teachers, and other school staff.

The Indoor Air Research Program has received international recognition because of its expertise in testing the EPA’s Tools for Schools (TFS) program chal-lenges and teaching them to most individuals today’s tools. In fact, the Austin Independent School District contacted TU for help in overcoming its indoor air issues because of the positive changes the district had heard about through other research.

This is not the first time a school district has reached out to TU for assistance in implementing a TFS program. School districts from 15 states and 25 countries have worked with TU for assistance in their air quality problems, including a district in Massachusetts hit by Hurricane Katrina in 2005. Since 2003, 1.5 million students and school staff have been a part of the TU research on indoor air quality through the TFS program.

Growing research shows that indoor pollution in schools can have damaging effects on academic performance due to an increased risk of short-term health problems, such as fatigue and nausea, as well as long-term problems like asthma. All can cause misunderstandings and concentration problems for students and teachers.

“One of our primary emphases related to our current research focus is on gathering data to assess the association between enhanced indoor air quality in a school and student academic performance,” said Richard Shaughnessy, TU’s chemical engineering research associate and IAQ program director.

School regulations vary regarding school indoor environments, and about 50 million children in more than 90,000 schools, Shaughnessy said. For states

regulate the indoor school environment, and fewer still have a minimum ventilation standard for schools. Final-

America Ambassador Hosts TU’s Dean, Kuwaiti Graduates

United States Ambassador Richard LeBaron hosted a reception in Kuwait for a veteran delegation from The University of Tulsa and The University’s Kuwait Alumni Association, consisting of Kuwaiti students from The University of Tulsa included members of the College of Engineering and Natural Sciences Dean Steven Bellows, William Enders Chief Professor of Petroleum Engineering Mohsen Kellie, and Amanda Davis, former director of development for the College of Engineering and Natural Sciences. The delegation visited Kuwait for two days as part of a regional tour that also included the United Arab Emirates. The tour was part of an effort to build relations with alumni from the Gulf region.

American ambassador hosts TU's Dean, Kuwaiti Graduates

The U.S. ENVIRONMENTAL PROTECTION Agency (EPA) has awarded $42,576 to The University of Tulsa Indoor Air Quality (IAQ) Tools for Schools program to assist the Austin (Texas) Independent School District in improving air quality for 42,000 students, teachers, and other school staff.

American ambassador hosts TU's Dean, Kuwaiti Graduates

The U.S. ENVIRONMENTAL PROTECTION Agency (EPA) has awarded $42,576 to The University of Tulsa Indoor Air Quality (IAQ) Tools for Schools program to assist the Austin (Texas) Independent School District in improving air quality for 42,000 students, teachers, and support staff.

The Indoor Air Research Program has received international recognition because of its expertise in testing the EPA’s Tools for Schools (TFS) program challenges and teaching them to most individuals today’s tools. In fact, the Austin Independent School District contacted TU for help in overcoming its indoor air issues because of the positive changes the district had heard about through other research.

This is not the first time a school district has reached out to TU for assistance in implementing a TFS program. School districts from 15 states and 25 countries have worked with TU for assistance in their air quality problems, including a district in Massachusetts hit by Hurricane Katrina in 2005. Since 2003, 1.5 million students and school staff have been a part of the TU research on indoor air quality through the TFS program.

Growing research shows that indoor pollution in schools can have damaging effects on academic performance due to an increased risk of short-term health problems, such as fatigue and nausea, as well as long-term problems like asthma. All can cause misunderstandings and concentration problems for students and teachers.

“One of our primary emphases related to our current research focus is on gathering data to assess the association between enhanced indoor air quality in a school and student academic performance,” said Richard Shaughnessy, TU’s chemical engineering research associate and IAQ program director.

School regulations vary regarding school indoor environments, and about 50 million children in more than 90,000 schools, Shaughnessy said. For states
Engineering Professions Benefit from ELITE Experience

L. DECKER DAWSON, a former University of Tulsa man and an accomplished oil and gas industry leader, said continuing education and nanotechnology, has generously chosen to endow a professorship in geophysics at TU. This gift will be used to recruit and retain a distinguished faculty member in geophysics.

Bryan Tapp, chair of the geoscience department, is thrilled with the gift. “Mr. Dawson’s generosity will enable us to expand our department, continue our tradition of providing an extraordinarily educational experience to our very talented students,” he said.

Dawson inherited his love of the oil industry from his father, who was an employee of a major pipeline company in Tulsa. Shortly after receiving his bachelor’s degree in civil engineering in 1941 from Oklahoma State University, Dawson put his passion for the industry to work for Magnolia Petroleum, where he gained his first experience in exploration. Shortly thereafter, his career was interrupted by World War II, and he headed the call to serve as a member of the U.S. Naval Reserve.

After returning from the war in 1946, Dawson joined Republic Exploration where he stayed for six years. In 1952, the desire to strike out on his own led him to found Dawson Geophysical, a legacy for an industry that has been very good to me,” he said.

“TU has a long history of supporting the geoscience industry; an industry that is in my blood and in my heart. Supporting the TU geoscience department by endowing a professorship in geophysics shows me love, a legacy for an industry that has been very good to me,” Dawson said.

Traditionally, endowed faculty positions are created and awarded to recognize the distinguished service and academic achievement of a faculty member. Such positions are the oldest and most prestigious forms of endowed professorships in any American higher education.

Endowed Professorship Established for Geophysics

McMahon Receives Yokley Award for Outstanding Faculty Advisor

Karen A. McMahon, TU instructor of biological science, was awarded the Yokley Award for Outstanding Faculty Advisor at the Tulsa Branch Convention held in 2006 at the Florida Institute of Technology in Melbourne, Fla.

The Yokley awards are based on a number of criteria including a minimum of 10 years service to the Ben Ben Yokley/Chilton’s Foundation, a national biological honor society. Tokley was started by an Oklahoma City University professor in 1921. In 1999, McMahon also received the Yokley Faculty Service Award for Advisors in 2001. She received her bachelor's degree in biology from Ohio University. She recently completed the writing and editing of laboratory safety guidelines for the Human Anatomy and Physiology (SAP)

Amber Hawkins of Primary Natural Resources in Tulsa said the course was a great introduction into the industry. Students can progress through the course at their own pace, but must complete it within 30 days.

CESE offers enrollment packages on an individual basis and also to companies that can register up to 21 people for CESE plans. more online programs in the future as more engineers retire and companies need to quickly train a new group of business leaders.

For more information about online courses through CESE, call 918-618-3080 or e-mail csesu@utulsa.edu. Information is also available on their Web site at www.cese.utulsa.edu. CESE online training in continuing education courses is an important part of CESE’s commitment to the Tulsa area.

Rybicki Receives Fellow Award for Work in Corrosion Research

SUNDERRA SINGH, associate professor of chemical engineering, has been named a Summer Faculty Fellow by the U.S. Air Force to conduct research work this summer at Brooks Air Force Base in San Antonio, Texas. He will assist in the development of new high-performance computing solutions for the physics, engineering and biology of Radar Frequency (RF) High Power Microwave effects on human health.

Prior to this award, Singh has received Summer Fellowship awards from NASA Langley Research Center in 2003, NASA Johnson Space Center in 2004 and the Office of Naval Research (ONR) for three consecutive years in 2005, 2006 and 2007. He also received a Summer Fellowship award for work at the Naval Air Warfare Center Weapons Division (NAWCD) in China Lake, Calif. During this work, he investigated photonic phenomena and optical scattering from silver nanowires and nanocylinders. The results of this work have been published in three journal papers and two NAWCD technical reports.

Singh received his bachelor’s degree in electronics and communication engineering from Kondapur University and his master’s degree in electrical engineering from the Indian Institute of Technology in Kanpur, India. He earned his doctorate in electrical engineering from the University of Mississippi.
Buck Honored with Lifetime Achievement Award from the Tulsa Academy of Science

Paul Buck, professor emeritus of biological sciences, was honored with a Lifetime Achievement Award from the Tulsa Academy of Science. The Academy presented Buck the award during its annual meeting in November. His former students and collaborators came from as far away as Canada and California, and spoke about him at the meeting.

He was described as an individual presenting every aspect of the Academy’s mission to stimulate scientific research, promote relationships among those engaged in scientific work in Oklahoma, and investigate and publicize the resources of the state.

Buck’s research activities and contributions to the understanding of Oklahoma’s vegetation were outlined, as was his work on allergenic plants in Oklahoma, which was showcased with Emilie Levine, chair of TU’s Department of Biological Sciences.

His book, Distribution and Identification of Woody Plants of Oklahoma in the Winter Condition, has had an influential role in the formation of the concept of state monotomes and ecotones to write a modern manual for identification of the state’s vascular flora.

Shoham Publishes Major Text on Two-Phase Flow Technology

Ovedia Shoham, the Floyd M. Stevenson Distinguished Professor of Petroleum Engineering and a professor in Petroleum Engineering at TU, has written the first book specifically dedicated to a specific topic in two-phase flow research. Published this year by the Society of Petroleum Engineers (SPE), Mathematical Modeling of Gas-Liquid Two-Phase Flow in Pipe presents Shoham’s research in understanding two-phase flow and explains how engineers in the field can improve flow predictions.

Although the primary target audience is petroleum, chemical and mechanical engineers, the fundamental scientific topics covered in the book make it applicable to a much broader range of disciplines, including nuclear, civil, geothermal and biomedical engineering.

Shoham has spent the past 24 years as a faculty member at TU teaching graduate courses on two-phase flow, and conducting and advising relevant research. Since 1994, Shoham has directed the TU Separation Technology Projects.

When electrical engineering students sign up for EE 1001, Introduction to Electrical Engineering, they probably expect the ordinary introductory course characteristics: extensive reading, long lectures and multiple-choice exams. But UI’s Introduction to Electrical Engineering with Gerald Kane, a student of electrical engineering, is anything but ordinary.

Students in Kane’s class participate in hands-on projects ranging from setting a house to building a vehicle. The necessary teamwork teaches students how to take a complicated process and make it successful and reward.

Students especially enjoyed the house project, which involved framing and wiring a small house inside the Kaplan Hall atrium. In addition to constructing a frame and installing the wiring, students called upon their classroom lessons to engineer a way to provide electricity to the house.

“My favorite project of all had to be the house,” he said. “It was a clever and useful way to teach us some basic applications of electricals.”

Kane balanced the practical application of lessons when Electrical Engineering students complete the house project.

“We need to live in a lasting and permanent way. I think that’s the real beauty of the house project,” Kane said.

Petroleum Engineering Major Makes the Grade for C-USA Football

Petroleum Engineering major Mike Monges was named to the 2006 Conference USA (C-USA) Football All-Academic Team, as voted upon by the Conference USA Sports Information Directors Association (CoSIDA). Monges, who graduated in May 2007, was a three-year starter at offensive tackle for the Tulsa Golden Hurricane.

TU had two representatives on the squad—Monges and starting quarterback Paul Smith, a communications major. Nine of the 12 CUSA institutions are represented on the prestigious list, but only TU and the University of Memphis had more than one player represented.

The all-academic team consists of 11 mid-season athletes who have carried a 3.2 cumulative grade point average or better and are starters or key reserve players on the football team. Monges started in 16 of 17 games and graduated from Tulsa with a 3.6 grade point average. He was named to the ESPN The Magazine CoSIDA Academic All-District VI team and to the C-USA Commissioners Honor Roll in 2007.

TURC Scholars Build on TU’s Research Reputation

The Tulsa Undergraduate Research Challenge (TURC) held its spring exhibition on campus March 28, 2007. Friends of the program joined scholars and faculty for a reception and dinner, during which TURC scholars were honored. The Tulsa Undergraduate Research Challenge (TURC) program is an endowed scholarship fund to support talented scholars of TURC with the generous donations.

TURC Scholars Build on TU’s Research Reputation

Paul Buck, professor emeritus of biological sciences, was honored with a Lifetime Achievement Award from the Tulsa Academy of Science. The Academy presented Buck the award during its annual meeting in November. His former students and collaborators came from as far away as Canada and California, and spoke about him at the meeting.

He was described as an individual presenting every aspect of the Academy’s mission to stimulate scientific research, promote relationships among those engaged in scientific work in Oklahoma, and investigate and publicize the resources of the state.

Buck’s research activities and contributions to the understanding of Oklahoma’s vegetation were outlined, as was his work on allergenic plants in Oklahoma, which was showcased with Emilie Levine, chair of TU’s Department of Biological Sciences.

His book, Distribution and Identification of Woody Plants of Oklahoma in the Winter Condition, has had an influential role in the formation of the concept of state monotomes and ecotones to write a modern manual for identification of the state’s vascular flora.

Shoham Publishes Major Text on Two-Phase Flow Technology

Ovedia Shoham, the Floyd M. Stevenson Distinguished Professor of Petroleum Engineering and a professor in Petroleum Engineering at TU, has written the first book specifically dedicated to a specific topic in two-phase flow research. Published this year by the Society of Petroleum Engineers (SPE), Mathematical Modeling of Gas-Liquid Two-Phase Flow in Pipe presents Shoham’s research in understanding two-phase flow and explains how engineers in the field can improve flow predictions.

Although the primary target audience is petroleum, chemical and mechanical engineers, the fundamental scientific topics covered in the book make it applicable to a much broader range of disciplines, including nuclear, civil, geothermal and biomedical engineering.

Shoham has spent the past 24 years as a faculty member at TU teaching graduate courses on two-phase flow, and conducting and advising relevant research. Since 1994, Shoham has directed the TU Separation Technology Projects.

When electrical engineering students sign up for EE 1001, Introduction to Electrical Engineering, they probably expect the ordinary introductory course characteristics: extensive reading, long lectures and multiple-choice exams. But UI’s Introduction to Electrical Engineering with Gerald Kane, a student of electrical engineering, is anything but ordinary.

Students in Kane’s class participate in hands-on projects ranging from setting a house to building a vehicle. The necessary teamwork teaches students how to take a complicated process and make it successful and rewarding.

Students especially enjoyed the house project, which involved framing and wiring a small house inside the Kaplan Hall atrium. In addition to constructing a frame and installing the wiring, students called upon their classroom lessons to engineer a way to provide electricity to the house.

“My favorite project of all had to be the house,” he said. “It was a clever and useful way to teach us some basic applications of electrics.”

Kane balanced the practical application of lessons when Electrical Engineering students complete the house project.

“We need to live in a lasting and permanent way. I think that’s the real beauty of the house project,” Kane said.

Petroleum Engineering Major Makes the Grade for C-USA Football

Petroleum Engineering major Mike Monges was named to the 2006 Conference USA (C-USA) Football All-Academic Team, as voted upon by the Conference USA Sports Information Directors Association (CoSIDA). Monges, who graduated in May 2007, was a three-year starter at offensive tackle for the Tulsa Golden Hurricane.

TU had two representatives on the squad—Monges and starting quarterback Paul Smith, a communications major. Nine of the 12 CUSA institutions are represented on the prestigious list, but only TU and the University of Memphis had more than one player represented.

The all-academic team consists of 11 mid-season athletes who have carried a 3.2 cumulative grade point average or better and are starters or key reserve players on the football team. Monges started in 16 of 17 games and graduated from Tulsa with a 3.6 grade point average. He was named to the ESPN The Magazine CoSIDA Academic All-District VI team and to the C-USA Commissioners Honor Roll in 2007.

TURC Scholars Build on TU’s Research Reputation

The Tulsa Undergraduate Research Challenge (TURC) held its spring exhibition on campus March 28, 2007. Friends of the program joined scholars and faculty for a reception and dinner, during which TURC scholars were honored. The Tulsa Undergraduate Research Challenge (TURC) program is an endowed scholarship fund to support talented scholars of TURC with the generous donations.
Google Looking for a Few Good Graduates

Google is coming to northeastern Oklahoma, and they’re looking for some TU graduates with programming experience to help them develop their next tech products.

“Google is currently hiring a team of engineers to help us develop software for our next generation of search products,” said Laura Ford, associate professor of computer science and chair of the department.

The job posting is open to full-time students and recent graduates, with experience in areas such as software engineering, computer science, and software development.

For more information, visit Google’s job listings at www.google.com/careerpath.
Greg Griebenow (BSPE ’86) joined Chemical and Industrial Engineering in August 2005 as a project engineer. His wife, Jenny (BA ’89, MA ’91), wrote an article published in Midwifery Today, Winter 2006, titled “Healing the Trauma: Entering Motherhood with Post-Traumatic Stress Disorder.”

Jennifer Deckard (BS ’88) and Kathy Fortmann (BSCE ’89) recently ran into each other at the Marriott in Shanghai, China. Jennifer and Kathy were staying in Shanghai on business.

Lisa Jane Johnson (BSEE ’89) and husband, Richard (BSEE ’82), now have a beautiful daughter to join their wonderful son in completing their family. Their son, Avery, is 11 years old, and their daughter, Annalee, is now 3.

1990’s

Bryant Mueller (BSME ’95) and his wife, Bridget, welcomed into the world their twin girls last year, Mason and Alexandra.

2000’s

Oris Hernandez (MS ’02, PhD ’06) and Carlos Avila (MSE ’03, PhD ’06) were married in Caracas, Venezuela on December 16, 2005. Oris is an employee at the Hydrates Flow Performance Project.

Kate Logan (BSME ’02) and Justin Hartman (BS ’01) were married in Key West on July 29, 2006. TU Alumni in attendance were bridesmaid Stephanie Shepherd (BS ’02), Binoy Agarwal (BS ’01, MBA ’06), Andrea Diedrich Reese (BA ’02, MA ’04), and Nathan Reese (BA ’02). After the wedding, Kate and Justin spent a week in St. Lucia. Kate and Justin reside in Houston and work for ExxonMobil and Royal Dutch Shell, respectively.

Crystal E. Redden (BSC ’04) and Aaron P. Weber (BSME ’04) were married on July 7 in Bixby, Okla. Aaron is a design engineer in Houston and Crystal is pursuing a Ph.D. degree in chemistry at Rice University.

Crystal E. Redden and Aaron P. Weber

Carlos Avila and Oris Hernandez